Waiting time distributions for non-interacting fermions on a tight-binding chain

Konrad H. Thomas and Christian Flindt
Département de Physique Théorique, Université de Genève, CH-1211 Genève, Switzerland
Email: konrad.thomas@unige.ch

Introduction

The concept of waiting time distribution (WTD) is a means to characterize the short time behavior of stochastic processes. It provides the probability distribution of waiting times between specific events and has recently been considered in electronics [1-5]. In this work we present a novel approach to WTD based on a 1D lattice model which constitutes a starting point to treating interacting systems [6].

Formalism

Central quantity: idle time probability (ITP) \(\Pi(t, \tau) \), probability that no event occurs in time interval \(I = [t_0, t_0 + \tau] \).

- In stationary state: ITP independent of \(t_0 \), WTD given by [3]:
 \[W(\tau) = \langle \frac{d}{d\tau} \Pi(\tau) \rangle. \] (1)
- \(\Pi(\tau) = \langle 1 - \hat{Q}_c \rangle \) where \(\hat{Q}_c \) detects events during \(I \).
- With linear dispersion \(\varepsilon_0 \), \(\hat{Q}_c \) can be written as a projector on the space interval \([x_0, x_0 + \varepsilon_0] \).
- For non-interacting particles \(\Pi(\tau) = \det (1 - \hat{Q}_c) \) where \(\hat{Q}_c \) is a matrix of single-particle expectation values of \(\hat{Q}_c \) in a single particle basis.

Tight-binding approach

We describe the system scatterer + leads in a tight-binding formalism in the spirit of [7]:

\[H = H_{\text{leads}} + H_{\text{scatterer}} + H_{\text{interactions}}, \]
\[H_{\text{leads}} = -i \sum_{\alpha=\uparrow,\downarrow} \sum_{m=1}^{N_{\uparrow,\downarrow} + 1} [\varepsilon_{\alpha,m} \hat{a}_{\alpha,m} + \text{c.c.}] + \text{h.c.}. \]

- Initially the scatterer is empty and decoupled from the leads. \(N \) states around the band center in the left lead are occupied while the right lead is empty.

Dispersion \(\varepsilon_0 \) of \(H_{\text{leads}} \) (thick line) and linear approximation (thin line). Horizontal lines are the eigenenergies in the left and right lead. Blue (gray) states are initially occupied (empty).

- At \(t = 0 \), \(H_{\text{leads}} \) is turned on and particles propagate from left to right.
- During a finite time window the current becomes quasi-stationary. For \(I_t \), in this regime we can then use Eq. (1).
- For states around the band center the dispersion is linear. \(\hat{Q}_c \) thus reads
 \[\hat{Q}_c = \sum_{m=1}^{N_{\uparrow,\downarrow}} \hat{a}_{\alpha,m} \hat{a}^\dagger_{\alpha,m} [\varepsilon_{\alpha,m} - \varepsilon_0]. \]

Quantum point contact

For non-interacting particles \(\Pi(\tau) \) is turned on and particles propagate from left to right.

Time dependent current for a QPC at varying transmission.

WTD for a QPC, data points: tight-binding approach, solid lines: scattering approach.

- For \(t_{\text{QPC}} = t \), \(W(\tau) \) is a Wigner-Dyson distribution.
- For small \(t_{\text{QPC}} \) the WTD approaches an exponential form while the Pauli-suppression at \(\tau = 0 \) persists.

Serial double quantum dot

WTD for a serial DQD with varying inter-dot coupling strength \(t_0 \).

Parallel double quantum dot

Parallel DQD with magnetic flux \(\Phi \) penetrating the area between the dots. Particles acquire a phase factor \(e^{i \Phi/\Phi_0} \) when hopping (counter) clockwise between the leads and the dots (red and blue arrows), where
 \[\phi = 2 \pi (\Phi/\Phi_0) = (\pi/2)/\Phi_0. \] Direct hopping between the dots is phase-neutral (green arrow).

Single level

For a single level an analytic expression for the WTD can be obtained in the high bias limit [1] :

\[W(\tau) = \frac{\Gamma_0}{\Gamma_L + \Gamma_R} \left(e^{-\Gamma_L \tau} - e^{-\Gamma_R \tau} \right)^{\frac{\Gamma_0}{\Gamma_L + \Gamma_R}} \left(e^{\Gamma_L \tau} - e^{\Gamma_R \tau} \right)^{\frac{\Gamma_0}{\Gamma_L + \Gamma_R}} \gamma^2 \tau^2 e^{-\gamma^2 \tau^2}, \] (2)

\[\Gamma_0 = 4t_0^2 L/R \gamma. \quad \alpha = L, R. \]

In our model the bias voltage is given by the width of the initially occupied window of states. Typically \(\tau V = 2 \alpha \), so that Eq. (2) is valid in the limit \(t_{\text{QPC}}, t_0 \ll |\gamma| \ll 1 \).

Conclusions

- We have developed a numerical method to calculate the WTD for non-interacting fermions on a tight-binding chain.
- Our results agree well with the scattering approach as well as with the generalized master equation approach in the high bias regime.
- Our method can be extend to include interactions using time dependent DMRG.

References